martes, 17 de mayo de 2016

POBLACIÓN, MUESTRA, SUS PARÁMETROS EN LA ESTADÍSTICA.

ESTADÍSTICA: POBLACIÓN, MUESTRA Y PARÁMETROS.

Población:

 Es la colección de datos que corresponde a las características de  la totalidad de individuos, objetos, cosas o valores en un proceso de investigación.

Para su estudio, en general se clasifican en Poblaciones Finitas y Poblaciones Infinitas.

Poblaciones Finitas: Constan de un número determinado de elementos, susceptible a ser contado. Ejemplo: Los empleados de una fábrica, elementos de un lote de producción, etc.

Poblaciones Infinitas: Tienen un número indeterminado de elementos, los cuales no pueden ser contados. Ejemplo: Los números naturales.


Así también las poblaciones pueden ser clasificadas en Reales e Hipotéticas, las reales son aquellas concretas, que ya existen. Ejemplo: Los aspirantes a un puesto de trabajo, los vendedores de una empresa. Mientras que las hipotéticas, son las formas imaginables en que se podría presentar un suceso. Ejemplo: Estimaciones de la población económicamente activa dentro de diez años.

En toda investigación lo ideal sería contar con observaciones o características de todos los elementos de nuestro grupo de interés, pero en muchas ocasiones eso sería muy caro y/o muy tardado o simplemente imposible, es por ello que se toman muestras.

Muestra: “Es una parte representativa de la población que es seleccionada para ser estudiada, ya que la población es demasiado grande para ser estudiada en su totalidad” Allen Webster.

Ya que se ha definido que es población y muestra, se procede a definir dos conceptos que se encuentran íntimamente relacionados a ellos:

Parámetro: Son las medidas o características descriptivas inherentes a las poblaciones. Los salarios promedio de todos los empleados de una empresa, puede ser un ejemplo de parámetro.

Estadístico o Estadígrafo: Son las medidas descriptivas inherentes a una muestra, las cuales pueden usarse como estimación del parámetro. Como ejemplo podría tomarse los salarios promedio de una muestra de los empleados de la empresa., MUESTRA Y PARÁMETROS.




fuentes bibliográficas:


SOTE, A. (2005) Principios de Estadística. Caracas: Panapo de 
Venezuela.

DE LA HORRA, J. (2003). Estadística aplicada. Ediciones Díaz 
de santos.

Enciclopedia libre Wikipedia (2010) Gráficos estadístico. Texto completo en:http://maralboran.org/wikipedia/index.php/Gr%C3%A1ficos_estad%C3%ADsticos


ESTADISTICA DE FRECUENCIAS ABSOLUTA, RELATIVA Y ACUMULADA.

ESTADÍSTICA DE FRECUENCIAS ABSOLUTA, RELATIVA Y ACUMULADA.

La distribución o tabla de frecuencias es una tabla de los datos estadísticos con sus correspondientes frecuencias.
  • Frecuencia absoluta: el número de veces que aparece un valor, se representa con fi donde el sub-índice representa cada uno de los valores.
La suma de las frecuencias absolutas es igual al número total de datos, representado por N.
f1+f2+f3++fn=N
equivalente a
i=1nfi=N

  • Frecuencia relativa: el resultado de dividir la frecuencia absoluta de un determinado valor entre el número total de datos, se representa por ni.
    ni=fiN
La suma de la frecuencias relativas es igual a 1. Lo cual puede verse fácilmente si se factoriza  N.

  • Frecuencia acumulada: la suma de frecuencias absolutas de todos los valores iguales o inferiores al valor considerado, se representa por Fi.
  • Frecuencia relativa acumulada: el resultado de dividir la frecuencia acumulada entre el número total de datos, se representa por Ni.




SOTE, A. (2005) Principios de Estadística. Caracas: Panapo de 
Venezuela.

DE LA HORRA, J. (2003). Estadística aplicada. Ediciones Díaz 
de santos.


Enciclopedia libre Wikipedia (2010) Gráficos estadístico. Texto completo en:http://maralboran.org/wikipedia/index.php/Gr%C3%A1ficos_estad%C3%ADsticos


HISTORIA

¿QUÉ ES LA ESTADÍSTICA Y LA PROBABILIDAD?

La Estadística y la Probabilidad se encargan del estudio del azar desde el punto de vista de las matemáticas:

La Estadística: ofrece métodos y técnicas que permiten entender los datos a partir de modelos.
De esta manera, el Cálculo de las Probabilidades es una teoría matemática y la Estadística es una ciencia aplicada donde hay que dar un contenido concreto a la noción de probabilidad.


La Probabilidad: propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas.



ESTADÍSTICA

Cuando hablamos de estadística, se suele pensar en un conjunto de datos numéricos presentada de forma ordenada y sistemática. Esta idea es debida a la influencia de nuestro entorno, ya que hoy día es casi imposible que cualquier medio de comunicación, periódico, radio, televisión, etc, no nos aborde diariamente con cualquier tipo de información estadística.


Sólo cuando nos adentramos en un mundo más específico como es el campo de la investigación de las Ciencias Sociales: Medicina, Biología, Psicología, ... empezamos a percibir que la Estadística no sólo es algo más, sino que se convierte en la única herramienta que, hoy por hoy, permite dar luz y obtener resultados, y por tanto beneficios, en cualquier tipo de estudio, cuyos movimientos y relaciones, por su variabilidad intrínseca, no puedan ser abordadas desde la perspectiva de las leyes deterministas.

La Estadística se ocupa de los métodos y procedimientos para recoger, clasificar, resumir, hallar regularidades y analizar los datos (Estadística Descriptiva), siempre y cuando la variabilidad e incertidumbre sea una causa intrínseca de los mismos; así como de realizar inferencias a partir de ellos, con la finalidad de ayudar a la toma de decisiones y en su caso formular predicciones 
(Estadística Inferencial).


PROBABILIDAD

En este sentido, el cálculo científico de probabilidades puede ayudarnos a comprender lo que en ocasiones la intuición nos indica de manera errónea. Un ejemplo típico es la denominada "paradoja de los cumpleaños". Supongamos que estamos en un grupo de 23 personas. 


Los cálculos nos dicen que la probabilidad de que dos personas celebren el mismo día su cumpleaños es del 50%, algo que a simple vista parece increíble (Paradoja del Cumpleaños). No es de extrañar por tanto que la Teoría de Probabilidad se utilice en campos tan diversos como la demografía, la medicina, las comunicaciones, la informática, la economía y las finanzas.


HISTORIA DE LA ESTADÍSTICA

La palabra Estadística procede del vocablo “Estado”, pues era función principal de los Gobiernos de los Estados establecer registros de población, nacimientos, defunciones, impuestos, cosechas... La necesidad de poseer datos cifrados sobre la población y sus condiciones materiales de existencia han debido hacerse sentir desde que se establecieron sociedades humanas organizadas.

Es difícil conocer los orígenes de la Estadística. Desde los comienzos de la civilización han existido formas sencillas de estadística, pues ya se utilizaban representaciones gráficas y otros símbolos en pieles, rocas, palos de madera y paredes de cuevas para contar el número de personas, animales o ciertas cosas.

En 1.662 un mercader de lencería londinense, John Graunt, publicó un tratado con las observaciones políticas y naturales, donde Graunt pone de manifiesto las cifras brutas de nacimientos y defunciones ocurridas en Londres durante el periodo 1.604-1.661, así como las influencias que ejercían las causas naturales, sociales y políticas de dichos acontecimientos. Puede considerarse el primer trabajo estadístico serio sobre la población.


Curiosamente, Graunt no conocía los trabajos de B. Pascal » (1.623-1.662) ni de C. Huygens (1.629-1.695) sobre estos mismos temas. Un poco más tarde, el astrónomo Edmund Halley (1.656- 1.742) presenta la primera tabla de mortalidad que se puede considerar como base de los estudios contemporáneos. En dicho trabajo se intenta establecer el precio de las anualidades a satisfacer a las compañías de seguros. Es decir, en Londres y en París se estaban construyendo, casi de manera simultánea, las dos disciplinas que actualmente llamamos estadística y probabilidad.

En el siglo XIX, la estadística entra en una nueva fase de su desarrollo con la generalización del método para estudiar fenómenos de las ciencias naturales y sociales. Galton » (1.822-1.911) y Pearson (1.857-1936) se pueden considerar como los padres de la estadística moderna, pues a ellos se debe el paso de la estadística deductiva a la estadística inductiva.

Los fundamentos de la estadística actual y muchos de los métodos de inferencia son debidos a R. A. Fisher. Se intereso primeramente por la eugenesia, lo que le conduce, siguiendo los pasos de Galton a la investigación estadística, sus trabajos culminan con la publicación de la obra Métodos estadísticos para investigaciones. En el aparece la metodología estadística tal y como hoy la conocemos.




HISTORIA DE LA PROBABILIDAD


Desde los orígenes la principal dificultad para poder considerar la probabilidad como una rama de la matemática fue la elaboración de una teoría suficientemente precisa como para que fuese aceptada como una forma de matemática. A principios del siglo XX el matemático ruso Andrei Kolmogorov » la definió de forma axiomática y estableció las bases para la moderna teoría de la probabilidad que en la actualidad es parte de una teoría más amplia como es la teoría de la medida.


Desde los tiempos del Imperio Romano hasta el Renacimiento, aunque no se conoce apenas las reglas con las que jugaban. Uno de estos juegos, denominado "hazard", palabra que en inglés y francés significa riesgo o peligro, fue introducido en Europa con la Tercera Cruzada. Las raíces etimológicas del término provienen de la palabra árabe "al-azar", que significa "dado". Posteriormente, en el "Purgatorio" de Dante el término aparece ya como "azar".
En la actualidad, ruletas, máquinas tragaperras, loterías, quinielas,..., nos indican que dicha fascinación del hombre por el juego, continúa.

La historia de la probabilidad comienza en el siglo XVII cuando Pierre Fermat » y Blaise Pascal » tratan de resolver algunos problemas relacionados con los juegos de azar.

Christian Huygens conoció la correspondencia entre Blaise Pascal y Pierre Fermat suscitada por el caballero De Méré, se planteó el debate de determinar la probabilidad de ganar una partida, y publicó (en 1657) el primer libro sobre probabilidad: De Ratiociniis in Ludo Aleae, (Calculating in Games of Chance), un tratado sobre juegos de azar.Se aceptaba como intuitivo el concepto de equiprobabilidad, se admitía que la probabilidad de conseguir un acontecimiento fuese igual al cociente entre

Durante el siglo XVIII, debido muy particularmente a la popularidad de los juegos de azar, el cálculo de probabilidades tuvo un notable desarrollo sobre la base de la anterior definición de probabilidad. Destacan en 1713 el teorema de Bernoulli y la distribución binomial, y en 1738 el primer caso particular estudiado por De Moivre » , del teorema central del límite. En 1809 Gauss » inició el estudio de la teoría de errores y en 1810 Laplace, que había considerado anteriormente el tema, completó el desarrollo de esta teoría. En 1812 Pierre Laplace » publicó Théorie analytique des probabilités en el que expone un análisis matemático sobre los juegos de azar.



A mediados del siglo  XIX, un fraile agustino austríaco, Gregor Mendel, inició el estudio de la herencia, la genética, con sus interesantes experimentos sobre el cruce de plantas de diferentes características. Su obra, La matemática de la Herencia, fue una de las primeras aplicaciones importantes de la teoría de probabilidad a las ciencias naturales

Desde los orígenes la principal dificultad para poder considerar la probabilidad como una rama de la matemática fue la elaboración de una teoría suficientemente precisa como para que fuese aceptada como una forma de matemática. A principios del siglo XX el matemático ruso Andrei Kolmogorov » la definió de forma axiomática y estableció las bases para la moderna teoría de la probabilidad que en la actualidad es parte de una teoría más amplia como es la teoría de la medida.